Conventional Alignment Now and in the Future

Catherine Le Cocq
SLAC
Metrology Department
Alignment Engineering Group

NPSS Snowmass Technology School, July 17, 2001

Presentation Outline

- Surface Network
- Transfer between Surface and Tunnel Networks
- Tunnel Network
- Components Alignment

Alignment Strategies

Conventional Alignment

Special Alignment Systems

Wire Systems

Hydrostatic Level Systems

Straightness Measurement Systems

Beam Based Alignment

Conventional Alignment

Equipment

Typical Equipment and its Resolution

Theodolite .3"

Gyro-Theod. 1"

EDM $100\mu m/.1km$

GPS 4mm/30km

Level .2mm/km

Plummet .1mm/100m

L.Tracker 15µm/10m

Conventional Alignment Surface Network

Purpose:

Establishing a global network of pillars and benchmarks to control the positioning, orientation and scale of the entire accelerator.

Instruments Used:

- Theodolites + EDMs + Levels
- GPS + Levels

GPS Geodetic Receivers

Manufacturers

Allen Osborne Ass.

Ashtech

Dassault Sercel NP

Geotronics

Leica

Magellan

Novatel

Topcon S.A.R.L.

Trimble

Catherine Le Cocq
SLAC Alignment Engineering Group

GPS Research Software

BAHN/GPSOBS	European Space Agency (ESA)			
Bernese Software	Astronomische Instituts Universität Bern (AIUB), Switzerland			
CGPS22	Geological Survey of Canada, (GSC), Canada			
DIROP	University of New Brunswick (UNB), Canada			
EPOS.P.V3	GeoForschungsZentrum (GFZ), Germany			
GAMIT/GLOBK	Massachusetts Institute of Technology (MIT), USA			
GAS	University of Nottingham, Great Britain			
GEODYN	Goddard Space Flight Center (NASA/GSFC), USA			
GEOSAT	Norwegian Defense Research Establishment (NDRE), Norway			
GIPSY/OASIS	Jet Propulsion Laboratory (JPL), USA			
MSOP	National Aerospace Laboratory, Japan			
OMNIS	Naval Surface Warfare Center, (NSWC), USA			
PAGE3	National Geodetic Survey (NGS), USA			
TEXGAP/MSODP	University of Texas Center for Space Research, (UTCSR), USA			

Source:

IGN/ENSG/LAREG France

One Global Datum: the CTRS

CTRS = Conventional Terrestrial Reference System

How to get to the CTRS?

Through an Organization	With a given Name	As a list of Coordinates		
IERS	ITRS	ITRF2000		
DoD NIMA	WGS 84	WGS 84 (G873)		
NGS	NAD 83	NAD 83 (CORS96)		

Solution for the Surface Network: Work within a realization of ITRS

- By using postfit GPS orbits expressed in ITRS coordinates. These are freely distributed by the International GPS Service (IGS).
- By transforming any other control points into the same reference frame.

GPS and GLONASS

	GPS	GLONASS
Managed by	US DoD	Russian Federation
Number of Satellites	24	24
Orbit Planes	6	3
Orbit Inclination in degree	55	64.8
Orbit Height in km	20200	19100
Carrier Frequency in MHz	L1: 1575.42	L1: 1602 + n*0.5625
	L2: 1227.60	L2: 1246 + n*0.4375

Now, what about adding leveling observations?

Spirit Leveling

$$\partial H_{AB} = I_A - I_B$$

Different Height Systems

$$\int_{O}^{M} g \, dn = W_{O} - W_{M} = C_{M}$$

Dynamic	Normal	Orthometric
$Hdyn_{_{M}} = \frac{C_{_{M}}}{\gamma_{_{O}}}$	$Hnor_{_{M}} = \frac{C_{_{M}}}{\overline{\gamma}}$	$Hort_{M} = \frac{C}{\overline{g}}$

With g measured (Earth) gravity, γ normal (Model) gravity

Pizzetti's Projection

How to compute geoid undulations?

$$N = h + H$$

$$N = \frac{T}{\gamma} = \frac{W-U}{\gamma}$$

$$N = \frac{R}{4\pi\gamma} \iint_{\sigma} \Delta g S(\psi) d\sigma$$

$$dN = -\varepsilon ds$$
 $\varepsilon = \xi \cos \alpha + \eta \sin \alpha$

Three components in the geoid

N_{GM} = long wavelength calculated from a geopotential model

 $N_{\Delta q}$ = medium wavelength computed with Stokes

 N_{T} = terrain correction

Local Geoid

- Start with a good regional geoid.
 In the US: G99SS published by NGS as a 1 by 1 arc minute grid.
- Add gravity measurements and generate finer terrain model.
- Incorporate geoid heights derived from GPS / leveling data.

What about tidal effects?

- Tide-free: All effects of the sun and moon removed.
- **Zero:** The permanent direct effects of the sun and moon are removed but the indirect component related to the elastic deformation of the earth is retained.
- Mean: No permanent tidal effects are removed.

Conventional Alignment

Transfer between Surface and Tunnel Network

The datum of the surface network is transferred into the tunnel through penetrations or shafts.

Equipment:
Optical Plummet, EDM,
Level

Plummet

Catherine Le Cocq
SLAC Alignment Engineering Group

Conventional Alignment Tunnel Network

Purpose:

Establishing a network of combined wall and floor monuments to be used in the placement and monitoring of the components.

Instruments Used:

- Theodolites, EDMs, Laser Trackers, Total Stations
- Levels
- Gyro-theodolites

Theodolites: TC2002 and T3000

ME5000 EDM

Gyro-theodolite: GYROMAT 2000

Catherine Le Cocq
SLAC Alignment Engineering Group

Conventional Alignment Components Alignment

Purpose:

Laying out, installing, mapping and monitoring the accelerator components both locally and globally to the given tolerances.

Instruments Used:

- Total Stations
- Laser trackers + Levels

SMX Laser Tracker

Tracker vs. HP Interferometer

Snowmass 2001- WG T6

Catherine Le Cocq
SLAC Alignment Engineering Group

July 17, 2001 #27

Coordinate Systems

Machine Lattice – Site System: XS

- 1. Assign location: $\mathbf{X}_{\mathrm{O}}^{\mathrm{C}}$ or $(\lambda_{\mathrm{O}}, \varphi_{\mathrm{O}}, h_{\mathrm{O}})$
- 2. Choose orientation: $(\alpha, dip=d, strike=s)$

Surface Network – Global System: XC

$$\mathbf{X}^{C} = \mathbf{X}_{O}^{C} + \mathbf{R}_{3}(\lambda_{O})\mathbf{R}_{2}(\frac{\pi}{2} - \varphi_{O})\mathbf{R}_{3}(\alpha)\mathbf{R}_{2}(\mathbf{d})\mathbf{R}_{3}(\mathbf{s})\mathbf{X}^{S}$$

Conventional alignment capabilities vs.

NLC linac alignment requirements

Conventional Alignment cannot meet **NLC** main linac short wavelength quadrupole tolerance requirements

Robert Ruland, SLAC

Simulated Layout

Old forced centering approach using 2D connected network approach:

- Horizontal angles .3 mgon
- Distances 100 μm
- Azimuths .5 mgon

Special Alignment Systems Wire Systems

SLAC/DESY

operational range: ± 1 mm resolution 100 nm bi-axial

KEK

operational range: ± 2.5 mm resolution 2.5 µm Single axis

CERN

operational range: ± 2.5 mm resolution 1 µm Single or two axis

Special Alignment Systems Hydrostatic Level Systems

ESRF/Fogale Nanotech HLS

water fully automated, tested res. 1µm, acc. ± 10 µm

SLAC FFTB System

mercury based capacitive res. 0.5µm, acc. ±2 µm prototype

Conventional Alignment + Wire + HSL vs.

NLC linac alignment requirements

Special Alignment Systems Straightness System with Movable Target

Autocollimation (optical / electro-optical)
Taylor Hobson, DA 400
Möller-Wedel Elcomat 2000, ±5 µm/10 m

Interferometric Measurements HP, Zygo, ±5 µm/10 m

Light Intensity Comparison LMS200, ±10 µm/10m

Fixed Beam, movable detector Positioning System LRP, ±10 µm/10m

Autocollimation

ELCOMAT 2000

Resolution 0.05"

Accuracy +/- 0.25"

Maximum Distance 25m

Catherine Le Cocq SLAC Alignment Engineering Group

Interferometric Measurement

Special Alignment Systems Straightness Systems with Stationary Target

Fixed Beam/fxd. Detector Laser System

Retractable target (CERN, *Quesnel*), ±20 µm/50 m Fixed transparent target (Max-Plank-Institute/CERN, Munich), max. 6 targets, ±50 µm/50 m

Diffraction Optics System

Fresnel Lens (SLAC), ±50 µm/3000 m Poisson Sphere (LNL, *Griffith*), ±5 µm/50 m

Rapid Tunnel Reference Survey System

TESLA Alignment Working Group chaired by J. Prenting, DESY W. Schwarz, Weimar University R. Ruland, SLAC

Development Stages

- Initial InvestigationFFTB stretched wire
- First Concept

 Rigid 5 m long bar
- Actual DesignTrain 22.5 m long with 6 measurement cars

Measurement Train

Prenting, 2001

Individual Measurement Car

Prenting, 2001

Prenting, 2001

Proposed Strategy

- Surface Network
- Transfer Network
- Tunnel Network
- Components Placement

- GPS + Levels
- Plummet, wire, etc.
- RTRSS
- Laser Trackers

Present and Future Studies

- InstrumentationRTRSS development at DESY
- ModelingMicro geoidAdjustment simulation
- Information System GIS